WS 2-Calorimetry

1. Calculate the heat lost $(\Delta \mathrm{rH})$ in a chemical reaction which causes 250 g of water to increase in temperature by $12.0^{\circ} \mathrm{C}$.
2. The combustion of 0.500 g of carbon causes the temperature of 100 mL of water in a bomb calorimeter to rise from $20.10^{\circ} \mathrm{C}$ to $59.20^{\circ} \mathrm{C}$. Calculate the molar enthalpy of combustion of carbon in $\mathrm{kJ} / \mathrm{mol}$.
3. A 12.7 g sample of sulphur, $\mathrm{S}_{8(\mathrm{~s})}$, is placed in a bomb which is then filled with oxygen under pressure. The bomb is placed in the calorimeter which is filled with 2.20 kg of water at $21.08^{\circ} \mathrm{C}$. The reaction mixture is ignited and the temperature rises to $33.88^{\circ} \mathrm{C}$. Calculate the molar heat of combustion of sulphur in $\mathrm{kJ} / \mathrm{mol}$.
4. A student mixed 100.0 mL of $1.50 \mathrm{~mol} / \mathrm{L}$ sulphuric acid with 200.0 mL of $1.50 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide. Both solutions were at $19.67^{\circ} \mathrm{C}$ initially and the highest temperature reached by the reaction mixture was $34.06^{\circ} \mathrm{C}$. Calculate the molar enthalpy of neutralization for sulphuric acid in $\mathrm{kJ} / \mathrm{mol}$.
