WS 2 - Le Châtelier's Principle

- 1. Nitrogen monoxide, a major air pollutant, is formed in automobile engines from the endothermic reaction of nitrogen gas and oxygen gas.
 - a) Write the equilibrium reaction equation including the term "energy" in the equation.
 - b) What is the direction of the equilibrium shift if the concentration of oxygen is increased?
 - c) What is the direction of the equilibrium shift if the pressure is increased?
 - d) What is the direction of the equilibrium shift if the temperature is decreased?
 - e) Gasoline burns better at higher temperatures. What is one disadvantage of operating automobile engines at higher temperatures?

- 2. In a sealed container, nitrogen monoxide gas and oxygen gas react to form nitrogen dioxide gas and are allowed to come to equilibrium. The reaction of nitrogen monoxide and oxygen is exothermic.
 - a) Write the equilibrium reaction equation including the term "energy" in the equation.
 - b) What is the direction of the equilibrium shift if the temperature is decreased.
 - c) What is the direction of the equilibrium shift if the $[NO_{(g)}]$ is decreased.
 - d) What is the direction of the equilibrium shift if the $[NO_{2(g)}]$ is increased.
 - e) What is the direction of the equilibrium shift if the volume of the system is decreased.

3. The following is an equilibrium mixture:

 $Fe^{3+}(aq) + SCN^{-}(aq) \Rightarrow FeSCN^{2+}(aq)$ faint yellow colourless red

Predict the colour change in the mixture when each of the following changes is made:

- a) a crystal of KSCN(s) is added to the system
- b) a crystal of $FeCl_3(s)$ is added to the system
- c) a crystal of NaOH(s) is added to the system

- 1. Use Le Châtelier's Principle to describe the effect of the following changes on the position of the equilibrium:
 - A. The equilibrium is: $N_2O_3(g) = NO(g) + NO_2(g)$
 - a) increase the [NO]
 - b) increase the $[N_2O_3]$
 - c) add a catalyst
 - d) increase the pressure by decreasing the volume
 - B. The equilibrium is: $2 H_2(g) + 2 NO(g) \Rightarrow N_2(g) + 2 H_2O(g)$
 - a) decrease the $[N_2]$
 - b) decrease the pressure by increasing the volume
 - c) decrease the [NO]
 - C. The equilibrium is: $2 \operatorname{CO}(g) + \operatorname{O}_2(g) = 2 \operatorname{CO}_2(g) + 566 \text{ kJ}$
 - a) increase the temperature
 - b) add a catalyst
 - c) increase the [O₂]
 - D. The equilibrium is: $I_2(g) + Cl_2(g) \Rightarrow 2 ICl(g)\Delta H = +35.0 \text{ kJ}$
 - a) decrease the temperature
 - b) decrease the [Cl₂]
 - c) increase the pressure by decreasing the volume
- 2. Describe the effect (increase, decrease or no change) on the concentration of the bold-faced substance by each of the given changes.
 - A. The equilibrium is: $N_2(g) + 3 H_2(g) \Rightarrow 2 NH_3(g)$ $\Delta H = -92.0 kJ$
 - a) increase the [N₂]
 - b) increase the volume
 - c) increase the temperature
 - d) add a catalyst
 - B. The equilibrium is: $2 \text{ HF}(g) \Rightarrow \mathbf{F}_2(\mathbf{g}) + H_2(g)$ $\Delta H = +536.0 \text{ kJ}$
 - a) decrease the [H₂]
 - b) decrease the volume
 - c) decrease the temperature
 - C. The equilibrium is: $SnO_2(s) + 2 CO(g) \Rightarrow Sn(s) + 2 CO_2(g) \Delta H = +13.0 \text{ kJ}$
 - a) increase the [CO]
 - b) add a catalyst
 - c) increase the temperature
- 3. Show the equilibrium adjustment in each of the following situations graphically: ***Note that the relative positioning of the molecules is not relevant
 - A. The equilibrium is: $H_2(g) + I_2(g) \approx 2 HI(g) + 52 kJ$

- a) increase the temperature
- b) decrease the volume
- c) inject some $H_2(g)$
- d) add a catalyst
- B. The equilibrium is: $2 \text{ SO}_2(g) + \text{O}_2(g) \Rightarrow 2 \text{ SO}_3(g) \qquad \Delta H = -197.0 \text{ kJ}$
 - a) inject some SO₂(g)
 - b) decrease the temperature
 - c) increase the volume
 - d) increase the [SO₃(g)]
- C. The equilibrium is: $CO(g) + H_2O(g) \Rightarrow CO_2(g) + H_2(g) \qquad \Delta H = -41.0 \text{ kJ}$
 - a) inject some $CO_2(g)$
 - b) remove some $CO_2(g)$
 - c) increase the temperature
 - d) decrease the pressure by increasing the volume
- 4. Interpret the following graphs in terms of the changes which must have been imposed on the equilibrium:

A. The equilibrium is: $PCl_5(g) + 92.5 \text{ kJ} \Rightarrow PCl_3(g) + Cl_2(g)$

B. The equilibrium is: $H_2O(g) + Cl_2O(g) \Rightarrow 2 HOCl(g) + 70 kJ$

