WS - 1 Heat Calculations

1. Calculate the quantity of heat required to warm 250 mL of water from $22.0^{\circ} \mathrm{C}$ to $98.0^{\circ} \mathrm{C}$ in an electric kettle. Note: water has a density of $1 \mathrm{~g} / \mathrm{mL} \therefore 1 \mathrm{~mL}$ has a mass of 1 g .
2. A 35.0 g polystyrene foam cup containing coffee changes in temperature from $21.0^{\circ} \mathrm{C}$ to $55.0^{\circ} \mathrm{C}$. Calculate the heat absorbed by the cup.
3. What mass of aluminum in a car engine will absorb $1.00 \times 10^{6} \mathrm{~J}$ of heat when the temperature rises from $22^{\circ} \mathrm{C}$ to $102^{\circ} \mathrm{C}$ after the car is started?
4. The liquid coolant in a car engine has a specific heat capacity of $3.88 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. Determine the mass of coolant that will absorb 1.00 MJ of heat during a temperature rise from $22^{\circ} \mathrm{C}$ to $102^{\circ} \mathrm{C}$.
5. In a laboratory experiment, 2.00 kJ of heat flowed to a 100 g sample of a liquid solvent, causing a temperature increase from $15.40^{\circ} \mathrm{C}$ to $21.37^{\circ} \mathrm{C}$. Calculate the specific heat capacity of the liquid solvent.
