WS 1 - Chemical Equilibrium

1. Write the equilibrium law for each of the following chemical reaction equations.

a)
$$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \rightleftharpoons 2 \operatorname{SO}_3(g)$$

b)
$$2 \operatorname{NO}_2(g) \rightleftharpoons 2 \operatorname{NO}(g) + \operatorname{O}_2(g)$$

- c) $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$
- d) $Na_2SO_4(aq) + CaCl_2(aq) = 2 NaCl(aq) + CaSO_4(s)$
- 2. In an experiment at 200°C, 0.500 mol/L of hydrogen bromide gas is placed in a sealed container and it decomposes into hydrogen gas and bromine gas.
 - a) Write the equilibrium equation and law for this reaction.
 - b) The equilibrium concentrations in this system are: [HBr(g)] = 0.240 mol/L, $[H_2(g)] = [Br_2(g)] = 0.130 \text{ mol/L}$. Calculate the equilibrium constant.

ICE Tables

- 1. 1.00 mol of hydrogen gas and 1.00 mol of iodine gas are sealed in a 1.00 L reaction vessel and allowed to react at 450°C. At equilibrium, 1.56 mol of hydrogen iodide gas is present. Calculate K_c for the reaction.
- 2. In an experiment, 2.00 mol of $H_2(g)$ and 2.00 mol of $F_2(g)$ are introduced into a 1.00 L flask at 500°C. After equilibrium was reached, the concentration of HF(g) was 0.500 mol/L. Calculate the K_c for this reaction at 500°C.
- 3. Phosphorus pentachloride gas decomposes into phosphorus trichloride gas and chlorine gas. If the $[PCl_5(g)]_i = 8.1 \times 10^{-3} \text{ mol/L}$ and the $[PCl_3(g)]_i = 0.298 \text{ mol/L}$, calculate the K_c. The $[Cl_2(g)]_{eq} = 2.00 \times 10^{-3} \text{ mol/L}$.

Graphical Analysis

The Haber-Bosch process of the industrial production of ammonia involves the equilibrium

 $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g) + 92.2 kJ.$

In a laboratory experiment designed to study this equilibrium, a chemical engineer injects 0.20 mol of $N_2(g)$ and 0.60 mol of $H_2(g)$ into a 1.0 L flask at 500°C. She records her analysis of the flask at 5 s intervals in the table shown.

	Concentration (mol/L)		
Time (s)	N ₂ (g)	$H_2(g)$	NH ₃ (g)
0	0.20	0.60	0.00
5	0.14	0.42	0.12
10	0.11	0.33	0.18
15	0.10	0.30	0.20
20	0.10	0.30	0.20
25	0.10	0.30	0.20

Analyze the data by:

- 1. Draw a graph of the concentrations of $N_2(g)$, $H_2(g)$ and $NH_3(g)$ versus time on the graph paper below. Include a legend with your graph.
- 2. State the time required for equilibrium to be established
- 3. Calculate the equilibrium constant for this reaction...showing all work.

