Electrochemistry Review

Which of the following changes is not an example of oxidation?

- A. Corrosion of metals
- B. Plating of metals
- C. Rusting of iron
- **D.** Reaction at the anode of a battery

An equation that represents a redox reaction is

- A. NaOH_(aq) + HCl_(aq) \rightarrow NaCl_(aq) + H₂O_(l)
- **B.** AgNO_{3(aq)} + KI_(aq) \rightarrow AgI_(s) + KNO_{3(aq)}
- C. $Mg(OH)_{2(s)} + H_2SO_{4(aq)} \rightarrow MgSO_{4(aq)} + 2H_2O_{(l)}$
- **D.** $\operatorname{Cu}_{(s)} + 4 \operatorname{HNO}_{3(aq)} \rightarrow \operatorname{Cu}(\operatorname{NO}_{3})_{2(aq)} + 2 \operatorname{NO}_{2(g)} + 2 \operatorname{H}_{2} O_{(l)}$

Use the following equation to answer the next question.

 $\mathrm{NH}_{3(g)} + \mathrm{O}_{2(g)} \rightarrow \mathrm{NO}_{2(g)} + \mathrm{H}_2\mathrm{O}_{(g)}$

Numerical Response

When balanced in terms of lowest whole numbers, the coefficients for this equation are, respectively, ____, ___, and ____. (Record all four digits on the answer sheet.)

A spontaneous reaction would occur between a 1.0 mol/L $Fe^{3+}_{(aq)}$ solution and

- A. I_{2(s)}
- **B.** Zn_(s)
- C. $Hg_{(l)}$
- **D.** 1.0 mol/L $\text{Fe}^{2+}_{(aq)}$

Numerical Response

 The volume of 0.160 mol/L K₂Cr₂O_{7(aq)} required to completely react with 10.0 mL of acidic 0.881 mol/L H₂O_{2(aq)} is _____ mL.

(Record your answer to three digits on the answer sheet.)

Numerical Response

 The oxidation numbers of carbon in HCOOH_(aq), C₆H₁₂O_{6(s)}, CO_{2(g)}, and CHCl_{3(g)}, respectively, are _____.

(Record all four digits on the answer sheet.)

The reaction $2 H_2O_{(l)} \rightarrow 2 H_{2(g)} + O_{2(g)}$ is an example of an

- A. exothermic redox reaction
- B. endothermic redox reaction
- C. exothermic reaction that absorbs energy
- endothermic reaction that releases energy

In which change are electrons gained?

- A. Ca²⁺(aq) to Ca(s)
- **B.** $2 \operatorname{Cl}^{-}_{(aa)}$ to $\operatorname{Cl}_{2(a)}$
- C. $\operatorname{Fe}^{2+}_{(aq)}$ to $\operatorname{Fe}^{3+}_{(aq)}$
- D. NaCl(s) to Na⁺(aq) and Cl⁻(aq)

Which ion could not act as both an oxidizing agent and a reducing agent?

- A. $Cu^{2+}{}_{(aq)}$ B. $Sn^{2+}{}_{(aq)}$ C. $Fe^{2+}{}_{(aq)}$
- D. Cr²⁺(ag)

Bacteria in our mouths and digestive systems convert sodium nitrate and other nitrate salts into nitrites, as indicated by the incomplete and unbalanced half-reaction NaNO_{3(ag)} \rightarrow NaNO_{2(ag)}. In this half-reaction,

- A. the oxidation number for sodium changes from -9 to -7
- B. the oxidation number of nitrogen increases
- C. the oxidation number of oxygen increases
- D. reduction occurs

Two reagents that will oxidize $Pb_{(s)}$ to $Pb^{2+}_{(aq)}$ but that will not oxidize $I^{-}_{(aq)}$ to $I_{2(s)}$ are

A. $F_{2(g)}$ and $Fe^{3+}_{(aq)} \checkmark$

- B. Fe³⁺(aq) and Br_{2(l)}
- C. $\operatorname{Cd}^{2+}_{(aq)}$ and $\operatorname{Ag}^{+}_{(aq)}$
- D. Cu²⁺(aq) and Sn⁴⁺(aq)

are summarized	of each of their respective A check mark indicates

	$\mathbf{X}^{+}_{(aq)}$	$Y^{2+}_{(aq)}$	$Z^{3+}_{(aq)}$	$W^{+}_{(aq)}$
$\mathbf{X}_{(s)}$	_	no reaction	1	1
$\mathbf{Y}_{(s)}$	1		. √	· 1
$\mathbf{Z}_{(s)}$	no reaction	no reaction	_	V
$\mathbf{W}_{(s)}$	no reaction	no reaction	no reaction	_

According to the results, the strongest reducing agent is

- A. Y²⁺(aq)
- в. $W_{(s)}$
- C. Y_(s)
- D. W⁺_(aq)

For the standard reference half-cell, the oxidation half-reaction and E° are

A.	$H_{2(g)} \rightarrow 2 H^{+}_{(aq)} + 2 e^{-}$	$E^\circ = 0.00 \text{ V}$
B.	$2 \operatorname{H}^{+}_{(aq)} + 2 \operatorname{e}^{-} \rightarrow \operatorname{H}_{2(g)}$	$E^\circ=0.00~{\rm V}$
C.	$2 \operatorname{H}_2 O_{(l)} + 2 e^- \rightarrow \operatorname{H}_{2(g)} + 2 \operatorname{OH}_{(aq)}$	$E^\circ = -0.83~\mathrm{V}$

 $H_{2(g)} + 2 OH_{(aq)} \rightarrow 2e^{-} + 2 H_2 O_{(l)} E^{\circ} = +0.83 V$ D.

Electrolytic cells are used commercially in

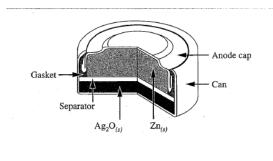
- A. cameras
- fuel cells В.
- C. flashlights
- D. metal plating

Which of the following aqueous ions can either gain or lose electrons in a redox reaction?

- A. Sn2+(aq)
- Cl⁻(aq) В.
- $Ca^{2+}(ag)$ C.
- S²⁻(aq) D.

If the lithium reduction half-reaction, $\text{Li}^+_{(aq)} + e^- \rightarrow \text{Li}_{(s)}$, had been assigned an E° value of 0.00 V, the predicted E°_{Det} value for the reaction $\text{Cu}_{(s)} + \text{Zn}^{2+}_{(aq)} \rightarrow \text{Cu}^{2+}_{(aq)} + \text{Zn}_{(s)}$ would be

A. +3.38 V


- в. -2.28 V
- C. -0.42 V
- D. -1.10 V

The equation representing a spontaneous reaction at standard conditions is

A. $\operatorname{Co}^{2+}_{(aq)} + 2\operatorname{Fe}^{2+}_{(aq)} \rightarrow \operatorname{Co}_{(s)} + 2\operatorname{Fe}^{3+}_{(aq)}$ B. $Sn^{4+}_{(aq)} + 2 Br^{-}_{(aq)} \rightarrow Sn^{2+}_{(aq)} + Br_{2(l)}$

C. $2 I^{-}_{(aq)} + Cl_{2(g)} \rightarrow I_{2(s)} + 2 Cl^{-}_{(aq)}$ **D.** $Pb_{(s)} + Fe^{2+}_{(aq)} \rightarrow Pb^{2+}_{(aq)} + Fe_{(s)}$

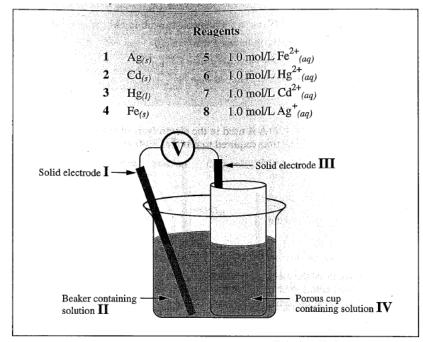
Silver oxide cells are efficient but expensive because they contain silver. The diagram illustrates the construction of a silver oxide cell.

The half reactions are

$Ag_2O_{(s)} + H_2O_{(l)} + 2e \rightarrow 2Ag_{(s)} + 2OH_{(aq)}$	E ^o = +0.34 V
$Zn(OH)_{2(s)}$ + 2e- \rightarrow $Zn_{(s)}$ + $2OH^{-}_{(aq)}$	Eo = -1.25 V

The anode of the cell is

А.	$Ag_{(s)}$	UNIC
B.	$\operatorname{Zn}_{(s)}$	А.
c.	$Ag_2O_{(s)}$	В. С.
D.	$Zn(OH)_{2(s)}$	D.

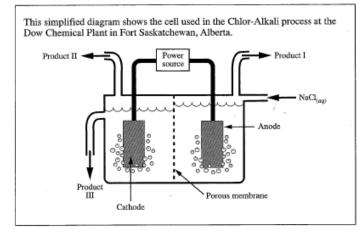

Using lowest whole number coefficients, the coefficient for $\mathrm{H_2O}_{(l)}$ in the balanced oxidation-reduction reaction that occurs during discharging of the cell is

As the cell operates, the species oxidized is		As the cell operates, the		
A.	Ag _(s)	À.	[OH ⁻ (aq)] increases	
в.	Zn _(s)	B.	mass of Zn(s) increases	
C.	$Ag_2O_{(s)}$	C.	mass of $Ag_2O_{(s)}$ decreases	
D.	$Zn(OH)_{2(s)}$	D.	mass of Zn(OH) _{2(s)} decreases	

Numerical Response

The voltage generated by the silver oxide cell is ______ V.

Use the following to answer the next question



Numerical Response

What reagents are required in order for the cell to produce a voltage of 1.25 V?

Electrode I	(Record in first column)
Solution II	 (Record in second column)
Electrode III	 (Record in third column)
Solution IV	(Record in fourth column)

Use the following information to answer the next two questions.

The cell shown in the diagram is

- A. electrolytic
- B. voltaic
- C. galvanic
- D. acid-base

Products I, II, and III from this cell, respectively, are

- A. Cl_{2(g)}, H_{2(g)}, and HCl_(aq)
- B. H_{2(g)}, Cl_{2(g)}, and NaOH_(aq)
- C. HCl(g), Cl2(g), and NaOH(aq)
- D. Cl2(g), H2(g), and NaOH(aq)

The chlor-alkali process used by Dow Chemical in Fort Saskatchewan uses sodium chloride from underground deposits. The sodium chloride is dissolved in water and then pumped into electrolytic cells where a current is passed through the solution to form yellow chlorine gas, colorless hydrogen gas and aqueous sodium hydroxide. The ionic equation is

 $2 H_2 O_{(I)} + 2 Na^+_{(aq)} + 2 Cl^-_{(aq)} \rightarrow Cl_{2(g)} + 2 Na^+_{(aq)} + 2 OH^-_{(aq)} + H_{2(g)}$

In the electrolysis of NaCl(aq), the cathode half-reaction is

- A. $\operatorname{Na}^+_{(aq)} + e^- \rightarrow \operatorname{Na}_{(s)}^-$
- **B.** $2 \operatorname{Cl}_{(aq)} \rightarrow \operatorname{Cl}_{2(g)} + 2 e^{-1}$
- C. $2 H_2 O_{(l)} \rightarrow O_{2(g)} + 4 H^+_{(aq)} + 4 e^-$
- **D.** $2 \text{ H}_2\text{O}_{(l)} + 2 \text{ e}^- \rightarrow \text{ H}_{2(g)} + 2 \text{ OH}^-_{(aq)}$

Numerical Response

If the mass of the element formed at the anode is 78.1 g, the mass of element formed at the cathode is _____ g. (Record your answer to three digits on the answer sheet.)

When the electric current is switched off, the

- A. pH stops decreasing
- **B.** concentration of the $Na^+_{(aq)}$ stops changing
- C. concentration of the Cl⁻(aq) stops decreasing
- **D.** concentration of the $H_2O_{(l)}$ stops decreasing