Use the following information to a nswer the next two questions.
Gregor Mendel examined the inheritance of two traits in pea plants: seed coat texture and colour. Seed coat texture can be represented as S-smooth and s-wrinkled, and seed coat colour can be represented as Y-yellow and ygreen. SSYY plants were crossed with ssyy plants to yield F_{1} pea seeds that were all smooth and yellow. By crossing plants grown from the F_{1} seeds, Mendel obtained four different phenotypes of F_{2} seeds:

> -smooth a nd green seeds
> -wrinkled and green seeds
> -smooth a nd yellow seeds
> -wrinkled and yellow seeds

1. The F_{2} seed phenotype ratio that Mendel obtained upon crossing two heterozygous smooth and yellow F_{1} individuals would have been: \qquad _.

Use the following additional information to answer the next question.

Mendel selected two varieties of pea plants from seeds he had grown. One va riety of peascame from a field planted with smooth, yellow seeds. Another variety of peascame from a field planted with wrinkled green seeds. These two varieties of peas were crossed to produce:
-255 plants with smooth and green seeds
-268 plants with wrinkled and green seeds
-237 plants with smooth and yellow seeds
-240 plants with wrinkled and yellow seeds
From the phenotype ratio of the offspring, Mendel deduced that the smooth and yellow parents had the genotype YySs.
2. This type of cross is referred to asa:
a. test cross
b. monohybrid cross
c. homozygous cross
d. heterozygous cross

Use the following information to a nswer the next two questions.
In cattle, homless or polled (P) is dominant over the homed (p) condition. This is an autosomal trait. The semen of a polled bull is used to artificially inseminate three cows. Cow 1 (homed) produces homed calf, cow 2 (polled) produces a homed calf, and cow 3 (polled) produced a polled calf.
3. Which of the cattle must have a heterozygous genotype for this trait?
a. Cow 3 and calf 2
b. Cow 3 and calf 3
c. The polled bull and cow 1
d. The polled bull and cow 2
4. Which of the above cattle could have two possible genotypes?
a. Cow 1
b. Cow 2
c. Cow 3
d. The polled bull

Use the following information to answer the next question.

In Labrador retriever dogs, two alleles, B and b, detemine whether the coat colour will be black (B) or brown (b). Black coat is dominant. A second pair of alleles, Eand e, are on a separate chromosome from B and b. The homozygous recessive condition, ee, prevents the expression of either allele Borb and produces a dog with a yellow-colored coat. Some examples of genotypes and phenotypes for Labrador retrievers are shown below.

Genotype	Phenotype
BBEe	black
bbEe	brown
Bbee	yellow

5. What is the probability of obtaining a black puppy from the cross: $\mathrm{BbEe} \times \mathrm{BbEE}$?
a. $\frac{9}{16}$
b. $\frac{3}{16}$
C. $\frac{3}{4}$
d. $\frac{1}{4}$

Use the following information to answer the next question.

Locations of Some Genes on a Section of a Drosophila Chromosome

6. During meiosis, which pair of genes have the best chance of being transferred together to a new cell?
a. dumpy wings and purple eyes
b. dumpy wings and speck body
c. black body and purple eyes
d. purple eyes and speck body

Use the following information to answer the next question.
Hypophosphatemia is one of the few genetic disea sescaused by a domina nt allele camied on the X chromosome. It c auses a severe deficiency of phosphate ions in the blood.

- from Rimoin, et. Al., 1996

7. A female with hypophosphatemia whose father had the disea se but whose mother did not will likely tra nsmit the disorderto:
a. Her sons only
b. Her sons and daughters equally
c. All her da ughters but none of her sons
d. All of her daughters a nd 50% of her sons.

Use the following information to answer the next question.

Feather colour in parakeets is controlled by two genes. For one pigment gene, the B allele produces blue colour and the b allele does not produce any colour. For the other pigment gene, the Y allele produces yellow colour and the y allele does not produce any colour. Any genotype containing at least one B allele and one Y allele will produce a green parakeet.
8. Which of the following parental genotypes could produce offspring with the four different colour pattems?
a. BBYy $x B b Y y$
b. BbYY x Bbyy
c. bbYY xbbyy
d. Bbyy xbbYy

The following information to answer the next two questions.

The gene for a light-sensitive protein found in red cones and the gene for a light-sensitive protein found in green cones be side by side on the X chromosome. A third gene for a light-sensitive protein found in blue cones was discovered on chromosome 7. Mutations to any of these genes results in the common forms of colourblindness. The muta nt alleles for these diso rders a re recessive.
9. A valid a ssumption based on this information is that:
a. all types of colourblindness a re sex-influenced.
b. males may be camiers for all types of c olourblindness.
c. only females may be ca miers for blue colourblindness.
d. blue colourblindness occurs in males and females with equal frequency.

Use the following additional information to answer the next question.

Note: Heterozygous individuals have not been identified. The phenotype of III-2 is unknown
10. Based on this pedigree:
a. the probability that individual Il-4 is a ca mier is 50%.
b. it is impossible to detemine whether individual II-6 is a camier.
c. if individual III-5 is a camier, all of her female children will have red-green colourblindness.
d. if individual II-3 is a camier, there is a 50% chance that her male child will have red-green colourblindness.

Use the following information to a nswer the next two questions.

A recessive allele causes Drosophila to have white eyes instead of wild-type eyes. The eye colorgene is known to be x-linked. In a cross between homozygous wild-type females and white-eyed males, all F_{1} progeny have wild-type eyes.
11. What ratio of wild-type to white-eyed progeny can be expected in each sex if F_{1} females are crossed to males with the same genotype as their father?
a. Males-1:0; Females-1:0
b. Males-1:1; Females-1:0
c. Males-0:1; Females-1:1
d. Males-1:1; Females-1:1

Use the following information to a nswer the next question.
Crossover Frequencies for Some Genes on Drosophila Chromosome 1

Genes	Crossover Fequency
White eyes (w) and Facet eyes (f)	1.5%
White eyes (w) and Echinuseyes (e)	4.0%
White eyes (w) and Ruby eyes (r)	6.0%
Facet eyes (f) a nd Echinus eyes (e)	2.5%
Facet eyes (f) and Ruby eyes (r)	4.5%

12. The crossover frequency between genese and r is:
a. 3.5%
b. 2.0%
c. 1.5%
d. 0.5%

Use the following information to a nswer the next two questions.
Assume that there are two gene pairs involved in detemining eye colour: one codes for pigment in the front of the ins and the other codes for pigment in the back of the iris.

If the genotype is

AABB	black-brown
AABb	dark brown
AAbb	brown
AaBB	brown-green flecked
AaBb	light brown
Aabb	grey-blue
$a a B B$	green
aaBb	dark blue
$a a b b$	light blue

13. A man hasgrey-blue eyes and a woman hasgreen eyes. Which eye colour phenotypes would be possible for children bom to this man and woman?
a. Grey-blue a nd green
b. Dark blue and brown
c. Light brown and dark blue
d. Brown-green flecked and light blue.
14. If one parent has light brown eyes a nd the other has dark brown eyes, what is the probability that they would have an offspring with grey-blue eyes? (Record your answer as a percentage of three digits in the space provided.)

Answer: \qquad \%

