1. A 2.75 g piece of aluminum is placed in 250 mL of iron(III) nitrate solution. Assuming that the reaction reaches endpoint, calculate the concentration of the $\mathrm{Fe}^{3+}(\mathrm{aq})$ ions.
2. If $6.00 \mathrm{~mol} / \mathrm{L}$ nitric acid is poured into a beaker containing 50.0 mL of $1.50 \mathrm{~mol} / \mathrm{L}$ hydrogen peroxide, what volume of acid is needed to reach endpoint?
3. If 30.0 mL of acidic dichromate ion solution is poured into a beaker containing 50.0 mL of $0.400 \mathrm{~mol} / \mathrm{L}$ tin(II) nitrate, calculate the dichromate ion concentration and the $\mathrm{Sn}^{4+}(\mathrm{aq})$ concentration.
4. Bromine can be obtained by bubbling chlorine gas through sea water. The concentration of bromide ions in sea water is $0.00020 \mathrm{~mol} / \mathrm{L}$. What mass of chlorine gas is needed to oxidize all the bromide ions in 1000 L of water?
 $15 \mathrm{~mol} /$ In nitric acidis needed to react with 12.7 g of eopper?
5. The copper (II) ions in a solution can be converted to copper metal by trickling the solution over iron. The reaction produces iron (II) ions from the scrap iron. If the process produces 25 L of solution containing $0.0020 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{Fe}^{2+}(\mathrm{aq})$ ions, what mass of copper is produced?
6. In an experiment to analyze the iron in an iron ore sample, $0.05000 \mathrm{~mol} / \mathrm{L} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{aq})$ was used in an acidic solution to oxidize $\mathrm{Fe}^{2+}(\mathrm{aq})$ ions to $\mathrm{Fe}^{3+}(\mathrm{aq})$ ions. Use the following data to calculate the concentration of Fe^{2+} (aq) in the solution:
volume of $\mathrm{Fe}^{2+}(\mathrm{aq})$ solution. 25.0 mL
final buret reading ($\left.\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{aq})\right) . \ldots \ldots48 .7 \mathrm{~mL}$
initial buret reading.. 3.7 mL
7. Another experiment was used to analyze the tin in a tin ore sample. The $\mathrm{Sn}^{2+}(\mathrm{aq})$ ions in an acidic solution were oxidized to $\mathrm{Sn}^{4+}(\mathrm{aq})$ by a $0.200 \mathrm{~mol} / \mathrm{L} \mathrm{KMnO}_{4}(\mathrm{aq})$ solution. Use the following information to calculate the concentration of $\mathrm{Sn}^{2+}(\mathrm{aq})$ in the solution.
volume of $\mathrm{Sn}^{2+}(\mathrm{aq})$ solution................................. 10.0 mL

initial buret reading... 1.8 mL
