Outcome 1 Topic 3 - Ionic Compounds

- Two types of compounds we will study in Science 10 are:
 - Ionic Compounds are formed between a cation and anion
 - b. Molecular compounds are formed between non-metal atoms
- Ionic compounds are <u>neutral</u> and <u>stable</u> compounds
- lonic compounds are formed through the process of $\underline{\text{ionic bonding}}.$
- lonic bonds form between atoms of $\underline{\text{metals}}$ and $\underline{\text{non-metals}}.$
- They are formed whenever electrons are transferred from a metal atom to a nonmetal atom.

http://bcs.wh free man.com/the lifewire/content/chp02/02020.html

http://www.teachersdomain.org/asset/lsps07">http://www.teachersdomain.org/asset/lsps07 int ionicbonding/>

- There are many different ways that ionic compounds can form
 - a. A univalent metal cation + a simple non-metal anion
 - b. A multivalent metal + a simple non-metal anion
 - Compounds formed with polyatomic cations and/or anions

A. A univalent metal cation + a simple non-metal anion

- Univalent means an element that has only one possible ion form
 - i. E.g. Sodium has only one ion Na

simple non-metal → ionic compound

Example 2:

L: F

Write the balanced chemical formula for the compound:

Naming Ionic Compounds:

- O All ionic compounds are made of two parts: a cation and an anion
- O Therefore names of ionic compounds also have two parts:
 - Name the cation first by using the elements name (usually a metal)
 - Name the anion second by changing the ending of the elements name to ide

Formula	Cation	Anion	Name
NaCl	Na ⁺	Cŀ	
BaF ₂	Ba ²⁺	F-	
K ₃ N	K ⁺	N ³ -	

Predicting Ionic Compound Formula

- The formula for an ionic compound contains element symbols that identify the type of ion present in the compound
 - Ex. NaCl tells us that there is sodium and chloride ions present in the compound
- $_{\odot}$ The formula may also have number subscripts that tells us how many of each ion makes up the compound.
 - Ex. BaF₂ tells us that there is 2 fluoride atoms and only 1 barium atom in the compound
- All ionic compounds are composed of an equal number of positive and negative charges.
 - Therefore the total charge of the cations must equal the total charge of the anions.

<u>Steps</u>	<u>Examples</u>		
	Sodium chloride	Aluminum chloride	
1. Identify ions and their charges	Nati Cl-1	Al*3 Cl"	
2. Determine the total charges needed to balance	Nat CL	A232 (2-1	
3. Note the ratio of <u>cations</u> to anions	1:1	1:3	
4. Use subscripts to write the formula if necessary	Na (1	Al (l3	

	Name	Formula
a)silver and iodine	silver iodide A3 I	AgI(s)
b)magnesium and oxygen	magnesium oxide Mg 02.	M ₀ 0
c)magnesium and bromine	magnesium bromite Mg2 Br1.	MgBrz
d)calcium and nitrogen	calcium nitrie	Ca3 N2
e)zinc and selenium	Zinc selenile	2nSe
f)sodium and sulfur	sodium sulfide	NazS
g)barium and phosphorus	barium phosphide	Bas Pa
h)aluminium and fluorine	aluninum flouride	AlF ₃
i)potassium and chlorine	potassium chloride	hCl
j)silver and oxygen	silver oxide	A ₃₂ 0

a) MgCl2	magnesism chloride
b) Ag3N	silver nitride
c) CsF	cesium fluoride
d) CdO	calmium exide
e) MgBr2	magnesim bromite
f) Al2O3	alumnum oxide
g) NaI	sodium iudide
h) K2S	potassion sulfile
i) BaS	barium sulside
j) Li3P	lithium phosphile

Compounds formed with multivalent metals

- Multivalent metals a metal that has more than one possible ion that can form from the atom.
- Ex. Irons can exist in two forms: iron (III) and iron (II)... The Roman numerals tell you the charge on the ion and which one should be used in the chemical formula.
- $_{\odot}\;$ There are two types of problems you will run into when using multivalent metals.
 - 1. Determining the name of a compound from the chemical formula. $S_{1}O_{2}$
 - 2. Writing the chemical formula from the name +in (IV) oxide
- 1. Determining the name of a compound from the chemical formula

Example 1: Write the word formula for ... **FeO**

FeO Fe⁺² O⁻⁵

Roman numerals tell us the $\underline{\text{charge on the cation}}$ and $\underline{\text{must}}$ be included in the word formulas.

Example 2: Write the word formula for Fe₂O₃

Example 3: Write the word formula for Cu₂O

2. Writing the chemical formula from the word formula

• This is easier because we know the charge on the multivalent metal, just follow the rules for predicting formula.

Example 1: Write the formula for nickel (II) sulfide

	Name		Formula
a) iron and sulfur	iron(III) sulfide		Fe ₂ S ₃ (s)
b) copper and oxygen	copper (11) oxide	(3" O2"	C.0
c) manganese and fluorine	manganese (11) Flourise	Mn2+ F-1	MAF2
d) gold and nitrogen	gold (III) nitrile	Au3+ N3-	AON
e) chromium an chlorine	chronium (111) chloride		Cell3
f) platinum and phosphorus	platinum (IV) phosphide	P44 P3-	P+3 P4
g) nickel and oxygen	nickel (11) oxide		N:0
h) cobalt and bromine	cobalt (11) bromise		(BC2
i) tungsten and iodine	tungsten iodide		WI6
j) manganese and sulfur	mangonese (11) sulfile		MnS

a) FeCl2(s)	iron(II) chloride	
b) FeBr3(s)	ican (III) bramile	2
c) CrS(s)	chromium (11) sulfile	5n 02
d) SnO2(s)	tin (IV) oxide	0-1
e) Pb3N2(s)	leed (11) nitride	
f) HgI2(s)	meccory (11) iodide	
g) CrO3(s)	chromin (VI) Oxide	
h) MnF4(s)	manganese (IV) fluoride	
i) Cu2O(s)	Copper (1) oxide	
j) AuI3(s)	gold (III) iodile	

NO3-1

Compounds formed with Polyatomic Ions

- O A **polyatomic** ion is an ion made of many non-metal atoms joined together.
- O These cluster of atoms carry a net electrical charge (usually negative) and act as either cations or anions when forming an ionic compound (usually act as an anion).
- $_{\odot}$ In chemical reactions, the polyatomic ion stays together and has a charge (that is given in the table of Polyatomic ions)
- O There are many polyatomic ions (also called complex ions). See the chart on eth back of your periodic tables. You need to become familiar with these.

Naming Ionic Compounds containing Polyatomic Ions

- O Metal cation or polyatomic cation keeps its name
- O Polyatomic anion keeps its name as it appears on the chart

Predicting Chemical Formulas made with Polyatomic Ions

Example 1: What is the chemical formula for sodium hydroxide

Nat OH NaOH

Example 2: What is the chemical formula for lithium sulphate?

L: + 504 L:2504

Example 3: What is the chemical formula for ammonium sulphate?

NH4+ 504-2 (NH4)2 504

Example 4: What is the name of $Ca(OH)_2$?

Calcium hydroxide

Example 5: What is the name of $K_2Cr_2O_7$?

potassium dichromate

Important to Note:

- Brackets are important and necessary if there is more than one polyatomic ion
- O Don't change the names of polyatomic ions when naming

COMBINE	IONS (optional)	FORMULA	NAME
iron(II) & nitrate	Fe ²⁺ NO ₃ -	Fe(NO ₃) ₂	iron(II) nitrate
aluminium & nitrate	Al³+ NO₃-	Al(NO ₃) ₃	aluminium nitrate
sodium & sulfate		Na2504	sodium sulfate
lead(IV) & sulfate		Pb (504)2	lend (IV) S. Hate
magnesium & carbonate		Mg(03	magnesism Carbonate
gold(III) & sulfite		Au2 (503)3	gold (III) sulfite
zinc & hydrogencarbo nate		Zn(H(O3)2	Zinc hydrogen carbonate
ammonium & nitrate		N M4 N O 3	amnonium nitrate
copper(I) & phosphate		Cu3 PO4	copper (1) phosphate
silver & hydroxide		Ason	silver hydroxide
aluminium & hydroxide	Ala OM	Al(04)3	aluminum hydroxide
lead(II) & phosphate		Pb3 (Pon)2	lead (11) phosphate
potassium & acetate		k (43000	putassion acetate
manganese(V) & sulfate		Mnz (504)5	mongenese (v) sifate

1) calcium acetate	Ca((H3 LOU)2
2) potassium chloride	kll
3) ammonium carbonate	(N H4), CO3
4) sodium nitride	Na ₃ N
5) titanium(IV) hypochlorite	T: (0(2)4
6) iron(III) sulfide	Fez Sz
7) zinc dichromate	2161207
8) platinum(IV) oxide	P+02
9) aluminium hydroxide	Al(on)3
10) mercury(II) nitrate	Hg (NO3)2
11) strontium fluoride	SrF2
12) tin(IV) hydrogenoxalat	5n (MOOCCOO)4
13) calcium peroxide	(a 0a
14) gold(I) sulfate	Au2 504
15) lead(IV) thiocyanate	Pb (Scn)4
16) nickel(III) sulfide	Ni253

17) CsI(s)	
18) SnCl ₄ (s)	
19) Cr(NO ₃) ₃ (s)	
20) (NH ₄) ₃ PO ₄ (s)	
21) Cu ₂ SO ₄ (s)	
22) $Mg(H_2PO_4)_2(s)$	
23) $Na_2S_2O_3(s)$	
24) AgClO ₃ (s)	
25) Zn(OH) ₂ (s)	