Chemistry 20 Final Review

Solutions Checklist

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

- explain the nature of solutions and the dissolving process
- illustrate how dissolving substances in water is often a prerequisite for chemical change
- differentiate between electrolytes and nonelectrolytes
- explain dissolving as an endothermic or an exothermic process with regard to breaking and forming of bonds
- express concentration in various ways
- perform calculations involving concentration, chemical amount, volume and/or mass
- use dissociation equations to calculate ion concentration
- describe the procedures and calculations required for preparing solutions from a pure solid and by dilution
- define solubility and identify the factors that affect it
- explain a saturated solution in terms of equilibrium

Key Terms

solution	dissociation	solute
ionization	solvent	electrolyte
nonelectrolyte	concentration	standard solution
molar concentration	stock solution	saturated solution
solubility	primary standard	secondary standard

Solutions

1. Define the following
a. Solute

Solute is the substance that gets dissolved.
b. Solvent

Solvent is the substance that does the dissolving.
c. Saturated solution

A solution that contains the maximum amount of solute at a given temperature.
d. Miscible

A liquid that will form a solution with another liquid (they will have very similar or the same type of intermolecular forces) in all proportions.
e. Immiscible

A liquid that will not form a solution with another liquid in any proportion.
f. Endothermic reaction

A reaction that absorbs energy.
g. Exothermic reaction

A reaction that releases energy.
h. Solubility Equilibrium

A solubility equilibrium exists when the rate of precipitation is equal to the rate of dissolving, or dissociation. You know you have a solubility equilibrium when you see a solution with a precipitate present on the bottom of the solution.
2. What is the difference between gases and solids in terms of temperature and solubility? Generally, as the temperature increases, solids increase in solubility, because the solvent particles move more quickly and can surround each solute with fewer solvent particles. However, as the temperature increases, gases become less soluble, because they have more energy to move together (coalesce) and form a bubble and leave the solvent.
3. What are the units for solubility?

Solubility is measured in $\mathrm{g} / 100 \mathrm{~mL}$ solution at a given temperature.
4. What is the concentration of a solution that has 2.45 mol of glucose in 890 ml of solution? $(2.75 \mathrm{~mol} / \mathrm{L})$

$$
\frac{2.45 \mathrm{~mol}}{0.890 \mathrm{~L}}=2.75 \mathrm{~mol} \mathrm{~L}
$$

5. What is the concentration of a solution that has 4.4 grams of sucrose in 990 ml of solution? ($0.0130 \mathrm{~mol} / \mathrm{L}$)
6. What is the volume if there is $0.750 \mathrm{~mol} / \mathrm{l}$ solution if there was 2.50 grams of salt (sodium chloride)? (57.0 mL)

$$
2.50 \mathrm{~g} \mathrm{MaCl} \times \frac{1 \sim 0) \mathrm{NaCl}}{58.44 \mathrm{~g} \mathrm{NaCl}} \times \frac{1 \mathrm{LNaCl}}{0.750 \sim 01 \mathrm{NaCl}}=0.0570 \mathrm{~L}
$$

7. Calculate the mass of silver nitrate needed to prepare 1.00 liter of a $0.325 \mathrm{~mol} / \mathrm{L}$. $(55.2 \mathrm{~g})$
8. How many liters of $1.50 \mathrm{~mol} / \mathrm{L}$ solution of magnesium hydroxide would contain 40.0 g of solute? (457 mL)

$$
\begin{array}{r}
40.0 \mathrm{gMg}(\mathrm{OH})_{2} \times \frac{\operatorname{lmol} \operatorname{Mg}(\mathrm{OH})_{2}}{58.33 \mathrm{ggg}(\mathrm{OH})_{2}} \times \frac{1 \mathrm{LMg}(\mathrm{OH})_{2}}{1.50 \mathrm{mg}(\mathrm{MH})_{2}} \\
=0.457 \mathrm{~L}
\end{array}
$$

9. Calculate the volume of $0.825 \mathrm{~mol} / \mathrm{L}$ of benzoic acid solution containing 0.360 mol of solute? (436 mL)

$$
\begin{aligned}
& 0.360 \mathrm{~mol} \mathrm{CbH}_{5} \mathrm{COOH} \times \frac{1 \mathrm{CGH}_{5} \mathrm{COOH}}{0.825 m 01 \mathrm{COH}_{5} \mathrm{COOH}} \\
& =0.436 \mathrm{~L}
\end{aligned}
$$

10. Sodium phosphate solution is used to remove the scales at the bottom of a tea kettle. Calculate the mass of sodium phosphate needed to make 4.00 L of a $0.500 \mathrm{~mol} / \mathrm{L}$ cleaning solution. $(328 \mathrm{~g})$

$$
\begin{array}{r}
4.00 \mathrm{LNa} \mathrm{NO}_{4} \times \frac{0.500 \mathrm{mO}_{1} \mathrm{Na}_{3} \mathrm{PO}_{4}}{1 \mathrm{La}_{3} \mathrm{PO}_{4}} \times \frac{163.94 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}}{1 \text { no l } \mathrm{Na}_{3} \mathrm{PO}_{4}} \\
=328 \mathrm{~g} \mathrm{Na}_{3} \mathrm{PO}_{4}
\end{array}
$$

11. Express the following in $\%(\mathrm{v} / \mathrm{v})$ or $\%(\mathrm{~m} / \mathrm{v})$.
a. 6.0 g of potassium chromate in 100 mL solution (6.0\%)

$$
\% \mathrm{~m} / \mathrm{N}=\frac{6.0 \mathrm{~g}}{100 \mathrm{~m}} \times 100 \%=6.0 \%
$$

b. 0.75 ml of methanol in 12.0 ml of solution (6.3 \%)

$$
\eta_{V N}=\frac{0.75 \mathrm{~mL}}{12.0 \mathrm{~mL}} \times 100 \%=6.3 \%_{0}
$$

c. 4.5 g of calcium chloride in 50.0 ml of solution (9.0%)

$$
\% \mathrm{mu}=\frac{4.5 \mathrm{~g}}{50.0 \sim L} \times 100 \%=9.0 \%
$$

12. What mass or volume of solute is contained in the following solutions $m=\frac{90 \mathrm{~m} / \mathrm{v} \cdot V_{\text {sol }}}{100 𠃌_{0}}$
a. 150.0 ml of $2.2 \%(\mathrm{~m} / \mathrm{v})$ solution containing sulfuric acid $(3.3 \mathrm{~g})$

$$
\begin{aligned}
& 2_{0 m} m=\frac{m_{\text {solute }}}{V_{\text {solution }}} \times 100 \% \quad m=\frac{2.2 \% \cdot 150.0 \mathrm{ml}}{100 \%}=3.3 \mathrm{~g} .
\end{aligned}
$$

b. 50.0 ml of $6.5 \%(\mathrm{~m} / \mathrm{v})$ solution of ammonium phosphate (3.3 g)

$$
m=\frac{6.5 \% \cdot 50.0 \mathrm{~mL}}{100 \%} m=3.3 \mathrm{~g}
$$

c. 89.0 ml of $75 \%(\mathrm{v} / \mathrm{v})$ solution of ethanol $(67 \mathrm{~mL})$

$$
V=\frac{75 \% \cdot 89.0 \mathrm{~mL}}{1007} \quad V=67 \mathrm{~mL}
$$

13. What volume would be needed for the following?
a. 3.6 g from a $5.5 \%(\mathrm{~m} / \mathrm{v})$ solution of sodium acetate $(65 \mathrm{~mL})$

$$
V_{\text {solution }}=\frac{m_{\text {solute }} \cdot 100 \%}{2 \mathrm{~m} / \mathrm{N}} V_{\text {sotin }}=\frac{3.6 \mathrm{~g} \cdot 1007_{0}}{5.5 \%} V_{\text {sola }}=65 \mathrm{~mL}
$$

b. 25.0 ml from a $10.5 \%(\mathrm{v} / \mathrm{v})$ solution of hydrogen peroxide (238 mL)

$$
V_{\text {soling }}=\frac{25.0 \text { mL } 100 \%}{10.57} \quad V_{\text {sollin }}=238 \mathrm{~mL}
$$

c. 9.6 g from a $30 \%(\mathrm{~m} / \mathrm{v})$ solution of calcium chloride $(32 \mathrm{~mL})$

$$
V_{\text {soling }}=\frac{9.6 \mathrm{~g} \cdot 100 \%}{30 \%} \quad V_{\text {solid }}=32 \mathrm{~mL}
$$

$$
\%_{0} v /=\frac{V_{\text {solute }}}{V_{\text {solution }}} \times 100
$$

14. Calculate the volume of solute in the following concentrations of solutions.
a. 4.50 litres of $25 \% \mathrm{v} / \mathrm{v}$ of hydrochloric acid $(1.13 \mathrm{~kg})$

$$
V_{\text {solute }}=\frac{4.50 \mathrm{~L} \cdot 257_{0}}{10090}=1.13 \mathrm{~L}
$$

b. 75.0 ml of $89.0 \% \mathrm{v} / \mathrm{v}$ of acetic acid (66.8 g)

$$
V_{\text {solute }}=\frac{75.0 \mathrm{~mL} \cdot 89.070}{100 \%}=66.8 \mathrm{~mL}
$$

15. What is the $\%(\mathrm{~m} / \mathrm{v})$ concentration of $2.50 \mathrm{~mol} / \mathrm{L}$ of hydrogen peroxide? (8.51%)

$$
\left.\begin{array}{rl}
\frac{2.50 \mathrm{mO} \mathrm{H}_{2} \mathrm{O}_{2}}{1 L \mathrm{H}_{2} \mathrm{O}_{2}} \times \frac{34.02 \mathrm{gH}_{2} \mathrm{O}_{2}}{1 m} \times \frac{1 \mathrm{~L}}{1000 \sim L} \times 100 \% \\
\mathrm{H}_{2} \mathrm{O}_{2}
\end{array} 10.51 \mathrm{~m} / \mathrm{m}\right)
$$

16. What is the $\%(\mathrm{~m} / \mathrm{v})$ concentration of 433 ppm of sodium chloride? (0.0433\%)

$$
\frac{433 \mathrm{~g}}{1000000 \mathrm{~mL}} \times 100 \%=0.0433 \%
$$

17. Calculate the molar concentration when two stock solutions of calcium acetate are combined: the $1^{\text {st }}$ solution has a concentration of $0.250 \mathrm{~mol} / \mathrm{L}$ at 180 ml . The $2^{\text {nd }}$ solution has a concentration of 0.300 $\mathrm{mol} / \mathrm{L}$ at 200 ml . $(0.276 \mathrm{~mol} / \mathrm{L})$

$$
\begin{aligned}
& 0.180 \mathrm{~L} \cdot \frac{0.250 \mathrm{mb}}{1 \mathrm{~L}}=0.0450 \sim 01 \\
& 0.200 \mathrm{~L} \cdot \frac{0.300 \mathrm{mo}}{2}=0.0600 \sim 01 .
\end{aligned}
$$

18. You are diluting a solution and you want to prepare $0.500 \mathrm{~mol} / \mathrm{L}$ at 200.0 ml from a stock solution of $1.00 \mathrm{~mol} / \mathrm{L}$, what volume do you need from your stock solution? (100 mL)

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
& 0.500 \frac{20}{L} \cdot 200.0 \mathrm{~mL}=1.00 \mathrm{~mol} / \mathrm{L} \cdot V_{2}=100 \sim \mathrm{~L}
\end{aligned}
$$

19. Pure methanol has a concentration of $24.7 \mathrm{~mol} / \mathrm{L}$. Calculate the volume of concentrated methanol needed to prepare 4.00 liter of a $10.0 \mathrm{~mol} / \mathrm{L}$ windshield washer antifreeze solution from pure methanol. (1.62 L)

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
& 24 \cdot 7 \sim 01 \mathrm{~L} \cdot V_{1}=10.0201 \mathrm{~L} \cdot 4.00 \mathrm{~L} \\
& V_{1}=1.62 \mathrm{~L}
\end{aligned}
$$

20. Commercial sulfuric acid is $17.6 \mathrm{~mol} / \mathrm{L}$. If one uses 170 ml of the concentrated acid and dilutes it to a volume of 1.50 L , what is the concentration of the diluted sulfuric acid solution? $(1.99 \mathrm{~mol} / \mathrm{L})$

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
& 17.6 \sim 01 / L \cdot 0.170 L=1.50 \mathrm{~L} \cdot C_{2} \\
& C_{2}=1.99 \sim 01 / \mathrm{L}
\end{aligned}
$$

21. Calculate the mass of solute needed to prepare a 500 ml of a $0.800 \mathrm{~mol} / \mathrm{L}$ solution of potassium chromate. (77.7 g)
22.

$$
\begin{aligned}
& 500 \mathrm{LK}_{2} \mathrm{CO}_{4} \times \frac{0.800 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CO}_{4}}{1 \mathrm{LK}_{2} \mathrm{COO}_{4}} \times \frac{194.20 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{4}}{1 \sim 01 \mathrm{~K}_{2} \mathrm{CO}_{4}} \\
& =77.7 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CrO}_{4}
\end{aligned}
$$

a. The above was the stock solution and you wanted to make a secondary solution that is 250.0 ml that is $0.4500 \mathrm{~mol} / \mathrm{L}$ in concentration, what will be the volume needed to make it ? (141 mL)

$$
\begin{aligned}
& C_{1} V_{1}=C_{2} V_{2} \\
& 0.800 \mathrm{~mol} / \mathrm{L} \cdot V_{1}=0.4500 \mathrm{~L} \cdot 250.0 \mathrm{~mL} \\
& V_{1}=141 \mathrm{~mL} .
\end{aligned}
$$

22. Describe the steps in detail the process of making a solution.

Acquire mass of solute

- Dissolve, \sim ~ $1 / 4$ thesolvent seeded
- Truster to volumetric flask
- Rinse glassware used for dissolving 3 times and pouring to volumetric glassware.
- Add solvent to volume mark on volunethe flask.

23. Describe the steps in detail the process of making a secondary solution.

- Add small volume of solvent to a volumetre flask.
- Using a voluntra pipe, clispense required volume of primary standard into volumetric flash for sewndang stenderd
\rightarrow Ald solvent up to volume mark on volumetric flask.

24. Make a flow chart in selectively precipitating out the following contaminants in a solution: $\mathrm{Pb}^{2+}, \mathrm{Ra}^{2+}$, and Hg^{+}.

25. What color of flame does the following show (check your databooklet...pg. 6...just ayin'...)?
a. Lithium
Red
b. Sodium
c. Lead

Blve-white.
26. Write the dissociation equation for the following and give the ion concentrations for each solvated ion.
a. $\quad 2.50 \mathrm{~mol} / \mathrm{L}$ of Calcium nitrate

$$
\begin{aligned}
\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(a q)} \rightarrow & \mathrm{Ca}^{2 r}(\mathrm{cq})+2 \mathrm{NO}_{3}^{-}(\mathrm{cq}) \\
& 2.50 \mathrm{molh} \mathrm{~L} 5.00 \mathrm{mll}
\end{aligned}
$$

b. $3.00 \mathrm{~mol} / \mathrm{L}$ of Cobalt (III) acetate

$$
\begin{aligned}
\mathrm{Co}_{0}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3(a 2)} \rightarrow & \mathrm{Co}_{0}^{35}(\mathrm{as})+3 \mathrm{CH}_{3} \mathrm{COO}^{-} \text {(as) } \\
& 3.00 \sim 0) \mathrm{L} 9.00 \sim 01 \mathrm{~L}
\end{aligned}
$$

c. $\quad 1.25 \mathrm{~mol} / \mathrm{L}$ of Zinc chloride

$$
\begin{aligned}
\mathrm{Zn} \mathrm{Cl}_{\text {(as })} \rightarrow & \mathrm{Zn}^{2+}(\mathrm{as})+2 \mathrm{Cl}_{(\mathrm{as})}^{(a)} \\
& 1.25 \mathrm{molh} \mathrm{~L} 2.50201 \mathrm{~L}
\end{aligned}
$$

d. $\quad 0.750 \mathrm{~mol} / \mathrm{L}$ of Ammonium sulfate

$$
\begin{aligned}
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow & 2 \mathrm{NH}_{4}^{+(a q)}+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \\
& 1.500 \sim 0 / \mathrm{L} 0.750 m / \mathrm{L}
\end{aligned}
$$

e. $\quad 0.250 \mathrm{~mol} / \mathrm{L}$ of Acetic acid

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{as}) \rightarrow \mathrm{CH}_{3} \operatorname{COOH}(\mathrm{ar})
$$

(Weak acids dons ionize
27. Calcium acetate is added to 10.0 ml of $0.0200 \mathrm{~mol} / \mathrm{L}$ silver nitrate. What is the mass of the precipitate

$$
\begin{aligned}
& \text { produced? (} 33.4 \mathrm{mg} \text {) } \\
& \mathrm{Ca}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2(a))}+2 \mathrm{AgNO}_{3(\text { aq })} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{AgCH}_{3} 100(\mathrm{~s})
\end{aligned}
$$

$$
\begin{aligned}
& =0.0334 \mathrm{~g} \mathrm{AgCH}_{3} \mathrm{COO}
\end{aligned}
$$

28. 50.0 ml of $0.250 \mathrm{~mol} / \mathrm{L}$ potassium phosphate reacts with 25.0 ml of $1.00 \mathrm{~mol} / \mathrm{L}$ lead (II) sulfate. What is the mass of the precipitate? (Hint: Limiting reagent question) (5.07 g)

$$
\begin{aligned}
& 2 \mathrm{~K}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{PbSO}(\mathrm{aq}) \rightarrow \mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+3 \mathrm{~K}_{2} \mathrm{SO}_{4} \text { (ar) } \\
& 0.0500 \mathrm{CK} \mathrm{~K}_{3} \mathrm{PO}_{4} \times \frac{0.250 \mathrm{~mol} \mathrm{~K}_{3} \mathrm{PO}_{4}}{1 \mathrm{LK}_{3} \mathrm{PO}_{4}} \times \frac{1 \mathrm{~m}_{2} \mathrm{~Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{2 \mathrm{~mol} \mathrm{~K}_{3} \mathrm{PO}} \times \frac{811.54 \mathrm{~g} \mathrm{~Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{121 \mathrm{~Pb}_{3}(\mathrm{PO})_{2}} \\
& =5.07 \mathrm{~g} \Leftarrow \text { Massprocwed, } \mathrm{K}_{3} \mathrm{PO}_{4} \text { is L.R. }
\end{aligned}
$$

$$
\begin{aligned}
& =6.76 \mathrm{~g}
\end{aligned}
$$

29. 75 ml of $1.25 \mathrm{~mol} / \mathrm{L}$ of $\mathrm{HCl}(\mathrm{aq})$ is reacted with 125 ml of $1.00 \mathrm{~mol} / \mathrm{L} \mathrm{KOH} \mathrm{(aq)}$, concentrations of the salt? (Hint: you need to know the L.R.) ($0.43 \mathrm{~mol} / \mathrm{L}$)

$$
\begin{aligned}
& \mathrm{HCl}_{(a s)}+\mathrm{KOH}_{(a s)} \rightarrow \mathrm{KCl}_{(\text {as })}+\mathrm{H}_{2} \mathrm{O}(1) \\
& V_{\text {TOTAL }}=75 \mathrm{~mL}+125 \mathrm{~mL} \\
& 0.075 \mathrm{LHCl} \times \frac{1.25 \sim 01 H C 1}{1 \mathrm{LHCl}} \times \frac{1 \mathrm{~mol} \mathrm{KCl}}{\operatorname{lmolHCl}} \times \frac{1}{0.200 \mathrm{~L} \text { Solution }}=200 \sim \mathrm{~L} \\
& =0.47 \mathrm{mos} \mathrm{KCl} \\
& \text { Cl is } \\
& \text { LR } \\
& \therefore \text { Resulting } \\
& \text { solution of } \\
& \text { lect is } \\
& 0.47 \sim 01 \%
\end{aligned}
$$

30. Predict the volume of the base ($0.250 \mathrm{~mol} / \mathrm{L}$ of sodium hydroxide) needed to be added to neutralize 75.0 ml of nitric acid at $0.500 \mathrm{~mol} / \mathrm{L}$. $(150 \mathrm{~mL})$

$$
\left.\mathrm{NaOH}_{(a 2)}+\mathrm{HNO}_{3}(4,) \rightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}{ }^{+} \mathrm{NaNO}_{3(a}\right)
$$

$$
\begin{aligned}
& =0.150 \mathrm{~L} \mathrm{MaOH} \text {. }
\end{aligned}
$$

31. A 150.0 ml sample of $0.7500 \mathrm{~mol} / \mathrm{L}$ of aqueous solution of sodium sulfate is added to 250.0 ml of strontium hydroxide at $0.350 \mathrm{~mol} / \mathrm{L}$. Predict the mass of the precipitate. (16.1 g)

$$
\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{Sr}(\mathrm{OH})_{2(\mathrm{aq})} \rightarrow \mathrm{SrSO}_{4}(\mathrm{~s})+2 \mathrm{NaOH}_{(a)}
$$

$$
\begin{aligned}
& =20.7 \mathrm{gSrSO} 4
\end{aligned}
$$

$$
\begin{aligned}
& 0.2500 \mathrm{LSr}(\mathrm{OH})_{2} \times \frac{0.350 \mathrm{~mol} \mathrm{Sr}(\mathrm{OH})_{2}}{1 \mathrm{LSr}(\mathrm{OH})_{2}} \times \frac{1 \mathrm{molSrSO}}{1 \mathrm{~mol} \mathrm{Sr}(\mathrm{OH})_{2}} \times \frac{183.69 \mathrm{gSrSO} 4}{1 \mathrm{~mol} \mathrm{SrSO4}} \\
& =16.1 \mathrm{~g} \operatorname{SrSO4} \mathrm{Sr}(\mathrm{OH})_{2} \text { is L.R. } \\
& \text { Mass Srsou Actually pricluced... }
\end{aligned}
$$

32. What volume of boric acid at $0.025 \mathrm{~mol} / \mathrm{L}$ will be needed to neutralize 90 ml of $0.055 \mathrm{~mol} / \mathrm{L}$ magnesium hydroxide? (132 mL)

$$
\begin{aligned}
& 2 \mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{aq})+3 \mathrm{Mg}_{\mathrm{a}}(\mathrm{OH})_{2(a q)} \rightarrow \mathrm{Mg}_{3}\left(\mathrm{BO}_{2}\right)_{2(a q 0}+6 \mathrm{H}_{2} \mathrm{O}(1) \\
& 0.090 \mathrm{~L} \mathrm{Mg}^{(\mathrm{OH})_{2}} \times \frac{0.055 \mathrm{~mol} \mathrm{Mg(OH)}_{2}}{1 \mathrm{LMg}(0 \mathrm{H})_{2}} \times \frac{2 \sim 0 \mathrm{H}_{3} \mathrm{BO}_{3}}{3 \Omega 0) \mathrm{Mg}(0 \mathrm{H})_{2}} \times \frac{1 \mathrm{LH}_{3} \mathrm{BO}_{3}}{0.025 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3}} \\
& =0.132 \mathrm{LH}_{2} \mathrm{BO}_{3} .
\end{aligned}
$$

