Chemistry 20 Final Review
Gases Checklist

Have you mastered the concepts, applications, and skills associated with the following items? Check them off when you are confident in your understanding.

Knowledge

- express atmospheric pressure in a variety of ways, including units of mm Hg , atm, and kPa
- convert between the Celsius and absolute (kelvin) temperature scales
- describe and compare the behaviour of real and ideal gases in terms of kinetic molecular theory
- explain the law of combining volumes
- illustrate how Boyle's, Charles', and combined gas laws are related to the ideal gas law
- perform calculations based on the ideal gas law under STP, SATP, and other conditions

Key Terms
pressure
STR
Boyle's law
absolute temperature scale
combined gas law
Avogadro's theory
ideal gas
universal gas constant
atmospheric pressure
SATP
absolute zero
Charles' law
law of combining volumes
molar volume
ideal gas law

Gases

1. Convert the following:
a. 235 torr to $\mathrm{kPa}(31.3 \mathrm{kPa}) \quad 235$ torr $\times \frac{101.3 \mathrm{kPa}}{760 \text { torr }}=31.3 \mathrm{kOa}$
b. 180 kPa to $\mathrm{mm} \mathrm{Hg}\left(1.35 \times 10^{3} \mathrm{mmHg}\right)$

$$
180 \mathrm{kPa} \times \frac{760 \mathrm{nmHg}}{101.3 \mathrm{kPa}}=1.35 \times 10^{3} \mathrm{~m} \mathrm{Hg}
$$

c. 2.34 atm to $\mathrm{kPa}(237 \mathrm{kPa})$

$$
2: 34 \text { atm }+\frac{101.3 \mathrm{kPa}}{1 \mathrm{~atm}}=237 \mathrm{ksa}
$$

d. $24^{\circ} \mathrm{C}$ to Kelvin $(297 \mathrm{~K})$

$$
24^{\circ} \mathrm{C}+273=297 \mathrm{~K}
$$

e. 987 K to ${ }^{\circ} \mathrm{C}\left(714{ }^{\circ} \mathrm{C}\right)$

$$
987 \mathrm{~K}-273 \equiv 714^{\circ} \mathrm{C}
$$

2. Give the conditions for STP.

$$
0^{\circ} \mathrm{C}, 101.3 \mathrm{kaa}
$$

3. Give the conditions for SATP.

$$
25^{\circ} \mathrm{C}, 100 \mathrm{kPa} .
$$

4. An unknown gas has a pressure of 469 mm Hg and occupies 29.0 ml . What would be the new volume if the pressure was changed to 0.998 atm ? $(17.9 \mathrm{~mL})$

$$
\begin{array}{rlrl}
0.998 a \mathrm{max} \times \frac{76 \mathrm{~m}_{2} \mathrm{H}_{3}}{1 \mathrm{~atm}} & P_{1} V_{1}=P_{2} V_{2} \\
= & 469 \mathrm{mnHg} \cdot 29.0 m \mathrm{~L} & =758.48 \mathrm{~mm} \mathrm{Hg}_{\mathrm{g}} \cdot V_{2} \\
& 758.48 \mathrm{mmg} & V_{2}=17.9 \mathrm{~mL}
\end{array}
$$

5. What would be the initial pressure (in mm Hg) of a hydrogen gas if it was changed to 660 torr and had a volume of 89.0 liters that was initially 80.9 liters? (726 torr)

$$
\begin{gathered}
P_{1} V_{1}=P_{2} V_{2} \quad 660 \text { torr } \cdot 89.0 \mathrm{~L}=P_{2} \cdot 80.9 \mathrm{~L} \\
P_{2}=726 \text { torr. }
\end{gathered}
$$

6. What does absolute zero mean?

All particles stop moving. There will be no spaces between Particles.
7. What would be the new volume of oxygen gas when pressure remains constant if the temperature changed from $39^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ and its initial volume was 685 ml ? (720 mL)

$$
\begin{aligned}
& T_{1}=312 \mathrm{~K} \\
& T_{2}=328 \mathrm{~K}
\end{aligned} \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad \frac{685 \mathrm{~mL}}{312 \mathrm{~K}}=\frac{V_{2}}{328 \mathrm{~K}} \quad V_{2}=720 \mathrm{~nL} .
$$

8. A sample of nitrogen gas exerts 52.6 kPa at $66^{\circ} \mathrm{C}$. What pressure would the gas exert at $99^{\circ} \mathrm{C}$ if the container's volume remains the same? (57.7 kPa)

$$
T_{1}=339 \mathrm{~K} \quad \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \quad \frac{52.6 \mathrm{KPa}}{339 \mathrm{~K}}=\frac{P_{2}}{372 \mathrm{~K}} \quad P_{2}=57.7 \mathrm{kPa}
$$

$$
T_{2}=372 \mathrm{~K} .
$$

9. What would be the final temperature of a gas (in ${ }^{\circ} \mathrm{C}$) if the pressure went from 780 mm Hg to 150.8 kPa and had an initial temperature of $26^{\circ} \mathrm{C}$? $\left(161^{\circ} \mathrm{C}\right)$

$$
\begin{array}{ll}
P_{1}=780 \mathrm{~m}-\mathrm{Hg} \times \frac{101.3 \mathrm{kPa}}{760 \mathrm{marg}} \\
P_{1}=103.97 \mathrm{kPa}
\end{array} \quad \begin{aligned}
& \frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \frac{103.97 \mathrm{kPa}}{299 \mathrm{~K}}=\frac{150.8 \mathrm{kPa}}{T_{2}} \quad \begin{array}{l}
T_{2}=434 \mathrm{~K} \\
\end{array} \\
&
\end{aligned}
$$

10. Helium gas in a hot air balloon experiences a temperature change from $21^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ and an atmospheric pressure change from 100 kPa to 88.5 kPa . What would be the new volume of the hot air balloon if its initial volume was 125 kiloliters? $\left(1.58 \times 10^{5} \mathrm{~L}\right)$

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \frac{100 \mathrm{kPa} \times 125 \mathrm{KL}}{294 \mathrm{~K}}=\frac{88.5 \mathrm{kPa} \times V_{2}}{328 \mathrm{~K}} V_{2}=158 \mathrm{~kL}
$$

11. A 2.7 liter sample of nitrogen gas is collected at a temperature of $45^{\circ} \mathrm{C}$ and a pressure of 0.92 atm . What pressure would have to be applied to the gas to reduce its volume to 2.0 liters at a temperature of $25.0^{\circ} \mathrm{C}$? (1.2 atm)

$$
\begin{aligned}
& T_{1}=318 \mathrm{~K} \\
& T_{2}=298.0 \mathrm{~K}
\end{aligned}
$$

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

$$
\begin{aligned}
\frac{0.92 \mathrm{~atm} \cdot 2.72}{318 \mathrm{~K}} & =\frac{P_{2} \cdot 2.0 \mathrm{~L}}{298.0 \mathrm{~K}} \\
P_{2} & =1.2 \mathrm{~atm}
\end{aligned}
$$

12. A sample of argon gas occupies a volume of 2.0 L at $-35^{\circ} \mathrm{C}$ at 1.2 atm . What would its Celsius temperature be at 2.0 atm if its volume decreases to 1.5 L ? $\left(25^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
& \quad \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \frac{1.2 \mathrm{~atm} \cdot 2.0 \mathrm{~L}}{238 \mathrm{~K}}=\frac{2.0 \mathrm{~atm} \cdot 1.5 \mathrm{~L}}{T_{2}} \\
& T_{1}=238 \mathrm{k} \\
& V_{1}=2.0 \mathrm{~L} \\
& P_{1}=1.2 \mathrm{am}
\end{aligned}
$$

13. What pressure would 2.00 Kmol of fluorine gas exert under $45^{\circ} \mathrm{C}$ with a volume of 985 ml ? $\left(5.4 \times 10^{6} \mathrm{kPa}\right)$

$$
\begin{array}{r}
P=\frac{n R T}{V} \quad P=\frac{200021.8 .314 \frac{L \cdot k P a}{k 201} \cdot 318 k}{0.985 L} \\
P=5.4 \times 10^{6} \mathrm{kPa}
\end{array}
$$

14. What mass of sulfur gas would be found in a 2.45 liter container at SATP? (25.4 g)

$$
\begin{aligned}
& T=298 \mathrm{~K} \\
& P=100 \mathrm{kPa} \\
& n=\frac{P V}{R T} \\
& h=0.0989 \mathrm{~ms} \\
& 0.0989 \mathrm{~mol} \mathrm{~S}_{8 \lg 2 \times} \times \frac{256.56 \mathrm{~g} \mathrm{~S}_{8}}{12 \sim 01 \mathrm{~S}_{8}} \\
& V=2.45 \mathrm{~L} \\
& =\frac{100 \mathrm{KPa} \cdot 2.45 \mathrm{~L}}{8.314 \frac{\mathrm{LK} \mathrm{KP}_{\mathrm{H}}}{\mathrm{Kmol}} \cdot 298 \mathrm{~K}} \\
& =25.4 \mathrm{~g} \text {. }
\end{aligned}
$$

15. What would be the volume of 3.52 mg of chlorine gas at $21^{\circ} \mathrm{C}$ under 99.2 kPa of pressure? $(1.22 \mathrm{~mL})$

$$
\begin{aligned}
& T=294 \mathrm{~K} \\
& n=3.52 \times 10^{-3} \mathrm{~g} \mathrm{C(} 2 \times 121 \mathrm{~mol} \mathrm{Cl}_{2} \\
& =4.96 \times 10^{-7} \mathrm{~mol} 70.90 \mathrm{gCl} \\
& V=\frac{n R T}{P} \\
& =\frac{\left.4.96 \times 10^{-7} 20\right) \cdot 8.314 \mathrm{~L} \cdot \mathrm{kPa}}{\mathrm{k} 201} \cdot 294 \mathrm{~K} \\
& V=0.00122 \angle C_{2}
\end{aligned}
$$

16. What volume of oxygen gas would occupy at STP that has a mass of 9.45 grams? (6.62 L)

$$
\begin{array}{rlrl}
n=9.45 \mathrm{~g} \mathrm{O}_{2} \times \frac{1201 O_{2}}{32.00 \mathrm{~g} \mathrm{O}_{2}} & V & =\frac{n R T}{P} \\
& =0.295_{20} 10_{2} & =\frac{0.295 m 01.8 .314 \frac{\mathrm{~L} \cdot \mathrm{kPa}}{\mathrm{krol}} \cdot 273 \mathrm{~K}}{101.3 \mathrm{kPa}} \\
V & =6.62 \mathrm{~L} .
\end{array}
$$

17. Oxygen gas and magnesium react to form 2.43 g of magnesium oxide. What volume of oxygen gas at 94.9 kPa and $25.0^{\circ} \mathrm{C}$ would be consumed to produce this amount of $\mathrm{MgO}(\mathrm{s})$? (786 mL)

$$
\begin{aligned}
& \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{Mg}(\mathrm{~s}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s}) \\
& 2.43 \mathrm{gMgO} \times \frac{\ln -1 \mathrm{MgO}}{40.31 \mathrm{gMgO}^{\prime}} \times \frac{1201 \mathrm{~g}_{2}}{2201 \mathrm{MO}^{\circ}} \\
& n_{0}=0,0301 \mathrm{~mol} \\
& V=\frac{n R T}{P} \\
& =\frac{0.0301 \mathrm{~mol} \cdot 8.314 \frac{\mathrm{~L} \cdot \mathrm{k} \rho_{a}}{\mathrm{k} \cdot \mathrm{~mol}^{2}} \cdot 298 \mathrm{k}}{94.9 \mathrm{kPa}} \\
& V=0.786 \mathrm{~L}
\end{aligned}
$$

18. Nitrogen triodide decomposes into explosive nitrogen gas and iodine. Calculate the volume of each gas produced at STP when 395 mg of $\mathrm{NI}_{3}(\mathrm{~g})$ decomposes. Calculate the mass of each gas produced. $\left(\mathrm{N}_{2}=\right.$ $11.2 \mathrm{~mL}, 0.0140 \mathrm{~g}-\mathrm{I}_{2}=336 \mathrm{~mL}, 0.381 \mathrm{~g}$)

$$
\begin{aligned}
& 2 \mathrm{NI}_{3(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{I}_{2(\mathrm{~g})}
\end{aligned}
$$

19. A 2.00 liter of sample of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, is burned at 1.00 atm and $25.0^{\circ} \mathrm{C}$ with 1.50 liters of oxygen. What is the mass of water vapor will be produced from the burning of ethane? What would be the volume of the water vapor under the same conditions? (Hint: determine the limiting reagent!) ($\mathrm{m}=1.96 \mathrm{~g} ; \mathrm{v}=1.29 \mathrm{~L}$.

$$
\begin{aligned}
& \text { (L) } \\
& 2.00 \mathrm{LC}_{2} \mathrm{H}_{6} \times \frac{6 \mathrm{LH}_{2} \mathrm{O}}{2 L \mathrm{C}_{2} \mathrm{HCl}_{6}}=6.00 L \mathrm{H}_{2} \mathrm{O} \\
& 1.50 \mathrm{~L} \mathrm{O} 2 \times \frac{6 \mathrm{LH}_{2} \mathrm{O}}{7 \mathrm{LO}_{2}}=1.29 \mathrm{LH} \mathrm{H} \\
& 0.06132010_{2} \times \frac{32.00 \mathrm{gO}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}} \\
& m_{0_{2}}=1.96 \mathrm{~g} . \\
& n=\frac{P V}{R T} \\
& n=\frac{101.3 \mathrm{k} \rho_{a} \cdot 1 \cdot 50 \mathrm{O} O_{2}}{8.334 \frac{L \cdot k \rho_{5}}{k \mu_{01}} \cdot 298.0 k} \\
& n=0.0613 m 10_{2}
\end{aligned}
$$

